Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
نویسندگان
چکیده
Background: Short-term load forecasting is an important issue that has been widely explored and examined with respect to the operation of power systems and commercial transactions in electricity markets. Of the existing forecasting models, support vector regression (SVR) has attracted much attention. While model selection, including feature selection and parameter optimization, plays an important role in shortterm load forecasting using SVR, most previous studies have considered feature selection and parameter optimization as two separate tasks, which is detrimental to prediction performance. Objective: By evolving feature selection and parameter optimization simultaneously, the main aims of this study are to make practitioners aware of the benefits of applying unified model selection in STLF using SVR and to provide one solution for model selection in the framework of memetic algorithm (MA). Methods: This study proposes a comprehensive learning particle swarm optimization (CLPSO)-based memetic algorithm (CLPSO-MA) that evolves feature selection and parameter optimization simultaneously. In the proposed CLPSO-MA algorithm, CLPSO is applied to explore the solution space, while a problem-specific local search is proposed for conducting individual learning, thereby enhancing the exploitation of CLPSO. Results: Compared with other well-established counterparts, benefits of the proposed unified model selection problem and the proposed CLPSO-MA for model selection are verified using two real-world electricity load datasets, which indicates the SVR equipped with CLPSO-MA can be a promising alternative for short-term load forecasting. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملShort-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network
A reinforcement learning algorithm is proposed to improve the accuracy of short-term load forecasting (STLF) in this article. The proposed model integrates radial basis function neural network (RBFNN), support vector regression (SVR), and adaptive annealing learning algorithm (AALA). In the proposed methodology, firstly, the initial structure of RBFNN is determined by using an SVR. Then, an AAL...
متن کاملA Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Grey Relational Analysis
As an important part of power system planning and the basis of economic operation of power systems, the main work of power load forecasting is to predict the time distribution and spatial distribution of future power loads. The accuracy of load forecasting will directly influence the reliability of the power system. In this paper, a novel short-term Empirical Mode Decomposition-Grey Relational ...
متن کاملA Hybrid Model for Short-Term Load Forecasting Based on Non- Parametric Error Correction
In this paper, we presented the performance of forecasting model and error correction will affect the accuracy of short-term load forecasting. Least squares support vector machines (LS-SVM) based on improved particle swarm optimization is selected as load forecasting model. Forecasting accuracy and generalization performance of LS-SVM depend on selection of its parameters greatly. Adaptive part...
متن کاملStudy on Short-Term Load Forecasting Method Based on the PSO and SVM model
The short-term load forecasting is an important method for security dispatching and economical operation in electric power system, and its prediction accuracy directly affects the operating reliability of the electric system. So the global optimization ability of particle swarm optimization (PSO) algorithm and classification prediction ability of support vector machine (SVM) are combined in ord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 2014